Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode.

نویسندگان

  • Chunmei Ding
  • Wei Qin
  • Nan Wang
  • Guiji Liu
  • Zhiliang Wang
  • Pengli Yan
  • Jingying Shi
  • Can Li
چکیده

The solar-to-hydrogen (STH) efficiency of a traditional mono-photoelectrode photoelectrochemical water splitting system has long been limited as large external bias is required. Herein, overall water splitting with STH efficiency exceeding 2.5% was achieved using a self-biased photoelectrochemical-photovoltaic coupled system consisting of an all earth-abundant photoanode and a Si-solar-cell-based photocathode connected in series under parallel illumination. We found that parallel irradiation mode shows higher efficiency than tandem illumination especially for photoanodes with a wide light absorption range, probably as the driving force for water splitting reaction is larger and the photovoltage loss is smaller in the former. This work essentially takes advantage of a tandem solar cell which can enhance the solar-to-electricity efficiency from another point of view.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting

Metal oxide semiconductors are promising photoelectrode materials for solar water splitting due to their robustness in aqueous solutions and low cost. Yet, their solar-to-hydrogen conversion efficiencies are still not high enough for practical applications. Here we present a strategy to enhance the efficiency of metal oxides, hetero-type dual photoelectrodes, in which two photoanodes of differe...

متن کامل

Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling

Various tandem cell configurations have been reported for highly efficient and spontaneous hydrogen production from photoelectrochemical solar water splitting. However, there is a contradiction between two main requirements of a front photoelectrode in a tandem cell configuration, namely, high transparency and high photocurrent density. Here we demonstrate a simple yet highly effective method t...

متن کامل

Solar hydrogen production using epitaxial SrTiO3 on a GaAs photovoltaic

We demonstrate an oxide-stabilized III–V photoelectrode architecture for solar fuel production from water in neutral pH. For this tunable architecture we demonstrate 100% Faradaic efficiency for hydrogen evolution, and incident photon-to-current efficiencies (IPCE) exceeding 50%. High IPCE for hydrogen evolution is a consequence of the low-loss interface achieved via epitaxial growth of a thin ...

متن کامل

Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.

Artificial photosynthetic systems can store solar energy and chemically reduce CO2 We developed a hybrid water splitting-biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages. When grown in contact with these catalysts, Ralstonia eutropha consumed the produced H2 to synthesize b...

متن کامل

GaN nano-pyramid arrays as an efficient photoelectrode for solar water splitting.

A prototype photoelectrode has been fabricated using a GaN nano-pyramid array structure grown on a cost-effective Si (111) substrate, demonstrating a significant improvement in performance of solar-powered water splitting compared with any planar GaN photoelectrode. Such a nano-pyramid structure leads to enhanced optical absorption as a result of a multi-scattering process which can effectively...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 29  شماره 

صفحات  -

تاریخ انتشار 2014